
Setting Fire – Documentation

Realistic Fire System with Propagation, Explosions and Weather Integration

Table of Contents

1. Introduction

2. Quick Setup

3. Required Tags & Layers

4. The FireEntity Component
o Fire Settings

o Weather & Propagation

o Optimization

o Explosion

5. Fire Extinguisher FPS

6. FireManager & Weather Systems

7. Fire Systeme Editor Window

8. FireEntity Mass Configurator

9. Custom Events: OnIgnited / OnExploded

10. Integration with Enviro Weather System

11. Demo Scene Overview

12. Troubleshooting & Tips

13. Support & Credits

1. Introduction

Setting Fire is a complete system to simulate dynamic fire behavior in Unity.

It includes fire ignition, spread logic, particle effects, explosions, fade transitions, and

environmental integration like rain and wind.

Designed to be lightweight, modular, and artist-friendly, it’s perfect for both realistic

simulations and stylized games.

What makes it special:

 Automatic fire distribution on any object

 Fire that reacts to rain and wind

 Interactive extinguisher with both input systems

 Full explosion support with debris & audio

 Powerful editor tools to streamline setup

 Compatible with first-person or third-person gameplay

2. Quick Setup

This section guides you through setting up the Setting Fire system from scratch in just a few

minutes.

Required Setup – New Input System

Important: Before using the Game Tools demo scenes or any components supporting both

input systems, you must:

Run :

Tools/BLInformatique/Run Setup Wizard

And follow the instructions.

Or :

Install the New Input System via the Unity Package Manager

In Project Settings > Player > Active Input Handling, select "Both" to enable

compatibility with both Old and New Input Systems.This setup is mandatory for all input

features to work correctly with your keyboard, mouse, and gamepad.

✅ Step-by-step Setup Instructions

1. Import the Package

Make sure all Setting Fire files are inside your project under:

Assets/BLInformatique/SettingFire/

And go to folder

Assets/BLInformatique/SettingFire/

Run your setting graphiq, Built-In or URP

2. Install Tags and Layers

On first import, you’ll be go to:

Tools > BLInformatique > Setting Fire > Install Tags And Layers

To install

 Tag: "Torch"

 Layer: "Fire"

✅ Click “Yes, install them”

If you skipped it, you can add them manually in Project Settings > Tags & Layers.

3. Add the FireManager

Go to:

Tools > BLInformatique > Setting Fire > Create Fire Manager

➡✅ This prefab controls wind, weather detection, and global propagation behavior.

4. Prepare Flammable Objects

Use the Fire Systeme tool:

GameObject > BLInformatique > Create Fire Systeme

Steps:

 Select your mesh parent object (e.g. “House”)

 Choose the Layer to assign (Fire recommended)

 Auto-assign colliders where needed

 ✅ Click “Add FireEntity to selected”

Each selected object will now contain a FireEntity component.

5. Assign a Fire Prefab

In each FireEntity, assign your preferred fire prefab (e.g. MediumFlames).

You can use any VFX or particle prefab that fits your visual style.

6. Test with a Torch

Place a torch in the scene and set:

 Tag: Torch

 Layer: Fire

When the torch touches a FireEntity, the object will ignite automatically!

7. Optional: Add the Fire Extinguisher

Use the menu:

Tools > BLInformatique > Setting Fire > Create Fire Extinguisher Object

It includes:

 Input System compatibility (old & new)

 Built-in VFX & SFX

 Fire detection & fade-out system

Summary Checklist

 Tags & Layers installed (Torch, Fire)

 FireManager in scene

 FireEntity on objects with fire prefab

 Torch or igniter present (tagged correctly)

 Optional extinguisher for gameplay

Next: FireEntity Detailed Settings

3. Required Tags & Layers

To ensure proper detection, ignition, and propagation of fire, Setting Fire relies on one tag

and one layer:

Tag: "Torch"

Used to identify objects that can ignite FireEntities.

Any GameObject with this tag will be considered a valid igniter (e.g. torches, burning barrels,

etc.).

Tip: You can assign this tag to any object that should trigger a fire — just make sure it has a

collider and is in the correct layer.

Layer: "Fire"

Used for:

 Detecting nearby igniters (via physics checks)

 Extinguishing fire via raycasting

 Propagation & spread detection

Important: Any object that should catch fire or be detected (like the torch) must be placed

on the "Fire" layer.

Auto-Installation Prompt

Go to:

Tools > BLInformatique > Setting Fire > Install Tags And Layers

A popup asks:

“Would you like to automatically add the required Tags and Layers for Setting Fire?”

✅ Click “Yes, install them” to set everything up instantly.

If skipped, you can manually create them via:

Edit > Project Settings > Tags and Layers

Debugging Tip

If your fire is not igniting, check:

 Is the torch in the "Fire" layer?

 Does it have the "Torch" tag?

 Is FireEntity.canBeIgnited checked?

4. The FireEntity Component

FireEntity is the main component used to make any object flammable and reactive to fire,

weather, explosions, and extinguishing systems.

It controls:

 Fire instantiation and visual fade-in/out

 Spread to nearby objects (with wind influence)

 Explosions and chain reactions

 Rain-based extinguishing

 Reaction to extinguishers

 Events on ignition or destruction

How to Add It

You can add the component in two ways:

 Manually:

Add FireEntity to any GameObject via the Inspector.

 Automatically (recommended):

Use the Fire Systeme window:

GameObject > BLInformatique > Create Fire Systeme

Component Structure

FireEntity is organized into 4 tabs to keep things clean and accessible:

Tab Description

Fire All settings related to ignition, visual effects, and fire prefab distribution

Weather & Propagation Controls spread logic, wind influence, and rain-based extinguishing

Tab Description

Optimization Auto fade-out, lifetime, light toggling

Explosion Controls explosion VFX, force, radius, and aftermath prefabs

Core Settings Overview

Setting Description

Fire Prefab Prefab of the fire particles to spawn

Can Be Ignited Enables this object to catch fire

Auto Ignite Checks for nearby igniters at runtime

Fire Density Controls how many fire instances spawn across the mesh

Always Place Ground Fire Ensures at least one fire at the base

When ignited, FireEntity distributes fire effects across its surface using its bounds and the

parameters you've configured.

Advanced Features

 Debris support: Replace burned object with debris prefab after destruction

 Smoke fade: Final smoke effect fades over time for realism

 Propagation Delay: Control how fast the fire spreads

 UnityEvents: Easily hook custom logic with OnIgnited() and OnExploded()

In the next sections, we’ll deep-dive into each tab with screenshots and explanations:

 4.1 Fire Settings

 4.2 Weather & Propagation

 4.3 Optimization

 4.4 Explosion

4.1 Fire Settings

The Fire tab contains all the base parameters for controlling how a FireEntity reacts when it

ignites, what visuals it spawns, and how it behaves visually.

Basic Fire Behavior

Property Description

Fire Prefab
The particle prefab to instantiate when the object catches fire. Must contain a

ParticleSystem.

Can Be Ignited If unchecked, this object cannot catch fire (manually or by igniters).

Auto Ignite If enabled, this object will regularly check for nearby igniters (tagged “Torch”).

Igniter Tag The tag used to identify objects that can ignite this FireEntity.

Ignite Detection

Radius
The distance within which an igniter can trigger the fire.

Tip: By default, torches should have Tag = Torch and Layer = Fire to be detected.

Fade-In Settings

Property Description

Fire Fade In

Duration

Controls how long the fire fades in when ignited. Smooth alpha blending is

applied to all ParticleSystems.

This creates a soft and realistic ignition rather than instant flames.

Fire Distribution

When ignited, Setting Fire intelligently spreads multiple fire instances across the surface of

your object, using its bounds.

Property Description

Fire Density Controls how many fire instances are distributed across the object's volume.

Max Fire Instances Maximum number of simultaneous fire effects spawned on the object.

Always Place Ground

Fire

Ensures a fire is always placed at the base of the object, even if surface fires

are limited.

This ensures immersive, realistic fire coverage without needing manual placement.

Debris & Final Smoke

These options allow you to define what happens when the object is fully burned or

destroyed.

Property Description

Debris Prefab The broken version of the object to instantiate after burning.

Final Smoke Effect Prefab A smoke particle system to instantiate at the debris base.

Smoke Y Offset Adjusts the vertical offset of the smoke spawn point.

Combine this with Auto Fade and Fire Lifetime for complete destruction cycles.

Smoke Fade Settings

Property Description

Smoke Fade Delay Time before smoke starts to fade.

Smoke Fade Duration Duration for the smoke to fully fade out.

Creates a natural dissipation effect after the fire is gone.

4.2 Weather & Propagation

This tab controls how fire spreads, how it reacts to rain, and how wind affects its behavior.

It’s what makes Setting Fire more than just a visual effect — it's a living system.

Weather Settings

Property Description

Extinguish In

Rain

If enabled, the fire will automatically fade out when raining (based on your

weather system).

Works with:

 FireManager and manual rain toggle
 WeatherManager.isRaining

 Full Enviro support (if integration is active)

Wind Influence

Wind can make fires spread faster or further, based on direction and intensity.

Property Description

Base Spread Chance The default chance that fire will spread to a nearby object (0–1).

Wind Influence

Multiplier

Modifies spread chance based on how well wind aligns with the direction of

nearby flammable objects.

The closer the target is to the wind direction, the higher the spread chance becomes.

Propagation Settings

Fire can propagate autonomously to nearby FireEntity components if enabled.

Property Description

Can Spread Activates this object’s ability to spread fire (controls internal logic).

Enable Propagation Enables actual fire spreading after ignition.

Spread Radius The radius within which other FireEntity objects will be detected.

Delay Before Spread Time (in seconds) before the first spread attempt occurs.

Min Spread Interval Minimum cooldown time before the next spread attempt.

Max Spread Interval Maximum cooldown between propagation attempts.

Spread Layer Mask Layer(s) used to detect valid FireEntity targets for propagation.

Fires will spread realistically, only to valid and igniteable objects nearby.

Behind the Scenes

 Spread logic is evaluated via Physics.OverlapSphere and wind alignment using

Vector3.DotProduct.

 All spreading is controlled per-object: full control, no global settings needed.

4.3 Optimization

The Optimization tab lets you configure how the fire fades out over time and how it behaves

in terms of performance and light simulation.

Perfect for large scenes or performance-sensitive projects.

Light Optimization

Property Description

Alternate Lights Randomly enables/disables the light modules on fire particle systems.

This reduces the number of real-time lights in your scene while still preserving dynamic and

realistic ambiance.

Fade Settings

These settings control how long the fire lasts and how it disappears once its time is up (or if

extinguished).

Property Description

Property Description

Auto Fade Automatically starts a fade-out timer once the fire ignites.

Fire Lifetime Time in seconds before the fire starts fading.

Fade Duration Time it takes for all fire visuals to smoothly disappear.

Combines with debris and smoke to simulate a full burn cycle.

Behavior Overview

With these options:

 Fire appears, burns, and disappears without manual intervention

 No more infinite fire draining performance

 You can fine-tune how quickly an area becomes quiet and cold again ✅➜✅➜❄✅

Tip for Large Scenes

If you're burning entire buildings or forests:

 Reduce Max Fire Instances

 Enable Alternate Lights

 Keep Auto Fade active

This allows realistic burn sequences without overwhelming the engine.

4.4 Explosion

This tab allows your FireEntity to explode after ignition or under certain conditions.

It includes visuals, force, VFX, replacement objects, and audio.

Explosion logic is fully modular and can be triggered automatically after a delay or by other

scripts.

Explosion Settings

Property Description

Can Explode Enables explosion behavior for this object.

Explosion Delay Time (in seconds) after ignition before the explosion triggers.

Explosion VFX

Duration

Defines how long the explosion visual effect (VFX) remains in the scene after

being triggered. (This value is crucial to avoid looping particles)

Explosion Effect

Prefab
The VFX prefab to instantiate at the moment of explosion.

Explosion Fire

Prefab
Fire prefab to spawn at the explosion origin. Useful for chain reactions.

Property Description

Destroyed

Version Prefab
Optional broken version of the object to instantiate after explosion.

Pre-Explosion

Effect Prefab
Optional effect (e.g., flashing or smoke) shown before the explosion delay ends.

Explosion Force The force applied to nearby rigidbodies using AddExplosionForce().

Explosion Radius The radius within which objects are affected.

Fade Fire On

Explosion
Smoothly fades existing fires instead of destroying them instantly.

Combine Fade Fire On Explosion with a short fade time for a cinematic chain reaction

effect.

Explosion Sound

Property Description

Explosion Sound The audio clip to play at the explosion location.

Explosion Volume Volume multiplier (0–1) for the explosion sound.

Played using AudioSource.PlayClipAtPoint() at the center of the explosion.

Explosion Events

Property Description

OnExploded UnityEvent triggered when this object explodes.

Use it to:

 Trigger animations

 Activate post-processing effects

 Start other fires or explosions

Typical Explosion Sequence

1. Fire ignites

2. Explosion Delay countdown begins

3. Pre-explosion VFX appears

4. BOOM – explosion VFX + sound + damage

5. Debris and smoke remain

6. FireEntity is destroyed

Explosion integrates seamlessly with fire spread and debris systems.

5. Fire Extinguisher FPS

The FireExtinguisherFPS component allows players to extinguish active fires directly from

a first-person perspective.

It supports both the Old Input System and Unity's New Input System, and includes built-in

sound, particles, and visual feedback.

Key Features

 Detects fire within a given range and radius

 Gradually fades out fire particles

 Plays looping sound while active

 Includes spray particle system

 Compatible with FireEntity logic

 Supports both toggle mode and hold to spray

Setup Instructions

You can create a ready-to-use prefab via:

Tools > BLInformatique > Setting Fire > Create Fire Extinguisher Object

Or attach the FireExtinguisherFPS script manually to any GameObject (preferably the hand

or tool in your FPS).

Component Parameters

Input Settings

Property Description

Use New Input

System

If true, uses Unity’s new InputAction asset. Otherwise uses classic

KeyCode.

Key (Old Input

System)
The key used to activate the extinguisher (default: Mouse0).

Use Toggle Enables toggle mode: press once to start, press again to stop.

New Input System

Property Description

Extinguish Action InputAction reference for activation (e.g., Trigger or Mouse).

Extinguisher Settings

Property Description

Extinguish Distance How far the extinguisher ray can reach (default: 5 units).

Extinguish Radius Area around the hit point where particles are affected.

Extinguish Strength How quickly fire is extinguished (affects alpha, size, emission).

Fire Layer Mask Layer(s) used to detect fire particle systems (should include "Fire").

Spray Effect Particle system that plays when extinguisher is active.

Extinguisher Sound Looping sound played while extinguishing.

Debug Options

Property Description

Enable Debug Visuals Shows rays, impact zones, and logged feedback in the console.

Extinguishing Logic

 Casts a ray from the center of the screen (like shooting).

 Detects all ParticleSystems in range on the "Fire" layer.

 Gradually reduces:

o Particle alpha

o Size

o Emission rate

 Adds an AutoFadeParticles script if not present.

 If a FireEntity is detected and burning, it calls StartFadeOut().

Sound Handling

 Uses a looping AudioSource on the same GameObject.

 Only plays sound while actively extinguishing.

 Stops when input is released (or toggled off).

Performance Note

The script uses:

FindObjectsByType<ParticleSystem>() // Unity 6000+

Optimized and filtered by Layer and proximity for efficiency.

7. FireManager & Weather Integration

The FireManager is a singleton-based controller that manages weather conditions, fire

propagation control, and wind settings across the entire scene.

It determines whether propagation is allowed, and integrates with Enviro (if present) or a

custom rain toggle.

Global Fire Control

Property Description

Block Propagation When Raining If true, disables all fire spread while raining.

Manual Rain Simulates rain manually without needing a weather system.

Use External Weather System Enables detection via an external system (like Enviro).

Auto Detect Enviro Automatically looks for EnviroManager in the scene.

If fire spreading isn't working, this is the first place to check.

Wind Settings

Wind affects the directional spread of fire when enabled in each FireEntity.

Property Description

Wind Direction A Vector3 defining the direction of wind across the map.

Wind Speed Controls how much influence the wind has on spread chance (0–5).

Spread is boosted when a neighboring object is aligned with the wind vector.

Rain Detection Methods

Depending on your setup, the fire system checks rain in one of three ways:

1. Using FireManager Only

 Enable Manual Rain from code:

FireManager.Instance.manualRain = true;

2. Using Enviro

 If autoDetectEnviro is true, FireManager will try to fetch rain status from Enviro

API (customizable).

3. Using WeatherManager

 You can control weather globally via:

WeatherManager.isRaining = true;

This is a static fallback for simple projects.

FireEntity Integration

Each FireEntity internally checks:

if (!FireManager.Instance.IsPropagationAllowed) return;

So disabling propagation from rain automatically affects all entities in the scene.

Debug Tip

If propagation never starts, check:

 Block Propagation When Raining is disabled

 Or that it's not raining in FireManager or WeatherManager

8. Fire Systeme Editor Window

The Fire Systeme window is a custom Unity Editor tool designed to prepare multiple

GameObjects for use with the FireEntity system — in a few clicks.

It automatically:

 Adds colliders

 Sets the correct layer

 Assigns FireEntity

 Adds a proper Rigidbody for interaction/destruction

How to Open It

Go to:

GameObject > BLInformatique > Create Fire Systeme

This opens a window with a user-friendly interface.

Window Overview

Layer Assignment

 Choose which layer to apply (e.g., "Fire")

 Applies to all selected objects and their children

✅ Required for propagation & detection to work correctly

Object Selection

 Use the Target Mesh Object field to select any GameObject

 All MeshRenderers from that object and its children will be listed

Mesh List & Colliders

For each mesh:

 Shows current collider status

 Lets you assign a new one (Box, Sphere, Capsule, or Convex Mesh)

 Uses Unity icons and tooltips for clarity

If a collider is missing, a yellow warning icon is shown

✅ If it’s already valid, a green checkmark is displayed

Final Step: Add FireEntity

At the bottom, click:

Add FireEntity to selected

This will:

 Add the FireEntity component to each checked object

 Set the correct Layer

 Add a Rigidbody (with isKinematic = true and useGravity = false)

 Apply selected collider types

It’s the fastest way to prepare an entire scene of objects for fire.

Tip

Use this tool after importing buildings, furniture, barrels, or destructible props.

One click, and they’re ready to burn.

9. FireEntity Mass Configurator

The FireEntity Mass Configurator is a powerful Editor tool that lets you batch-edit and

override settings for multiple FireEntity components at once.

Perfect for making global changes to:

 Fire behavior

 Spread logic

 Fade timings

 Explosion parameters

How to Open It

Right-click any GameObject in the hierarchy and go to:

GameObject > BLInformatique > FireEntity Mass Configurator

This opens a dedicated window with a smart tab system.

Main Interface Features

Object Scanning

 Select a parent GameObject

 All FireEntity components found in children will be listed

 You can check/uncheck which ones to apply overrides to

You can also ping or highlight each object directly from the window

Tabbed Settings Navigation

Tabs are split into four categories, matching the FireEntity structure:

 Fire

 Weather

 Optimization

 Explosion

✔✅ Smart Override System

Each property has:

 A checkbox to enable override

 The current value (editable)

Once you're ready:

Click “Apply Overrides to Checked FireEntities”

This will instantly update all selected objects with the new values.

Quality of Life Features

 Initial values auto-filled from the first selected FireEntity

 LayerMask and prefab fields are fully editable

 Override only what you need, leave the rest unchanged

 Easily manage hundreds of FireEntities across large maps

Example Use Cases

 Change all fire prefabs after a VFX upgrade

 Enable Extinguish in Rain globally

 Set fire lifetimes and fade durations for optimization

 Enable explosions and set common audio clip or VFX

Debug Note

If no FireEntities are listed:

 Make sure you’ve run the Fire Systeme tool first

 Or confirm that the selected object has FireEntity components in children

9. Custom Events – OnIgnited & OnExploded

The FireEntity component includes two powerful UnityEvents:

 OnIgnited
 OnExploded

These allow you to trigger custom logic in your game at runtime, without writing any code.

OnIgnited Event

When it triggers:

 This event is fired when the object successfully catches fire

(via igniter detection or manual call to Ignite())

Use cases:

 Play a custom animation (e.g., a wood pile catching fire)

 Enable a sound or voice line

 Start a countdown

 Activate a light or shake the camera

 Broadcast to a quest system

How to assign:

1. Select the GameObject with FireEntity

2. In the Inspector, scroll to the “Fire Events” section

3. Click the + button to add a listener

4. Drag and drop the target object with the method to call

OnExploded Event

When it triggers:

 This event is invoked right after the object explodes,

either from delayed explosion logic or triggered programmatically.

Use cases:

 Chain multiple explosions (by igniting other FireEntitys)

 Play special music or cutscene

 Update objectives (e.g., “Destroy all barrels”)

 Spawn AI enemies after a trap is triggered

Combined Example

Burning a gas tank:

 OnIgnited:

Play a warning sound

Start flashing the object

Trigger a timer

 OnExploded:

Spawn debris

Ignite nearby objects

Update mission status

Pro Tip

You can also trigger Ignite() or Explode() manually from script:

GetComponent<FireEntity>().Ignite();

GetComponent<FireEntity>().StartCoroutine("HandleExplosion");

Or chain from another explosion:

otherFireEntity.OnExploded.AddListener(() => myFireEntity.Ignite());

10. Integration with Enviro Weather System

Setting Fire fully supports Enviro – Sky and Weather, one of the most popular weather

systems for Unity.

With just a few toggles, fire will react to Enviro’s weather conditions, like rain, storm, or

wetness – and stop spreading if it’s too humid.

✅ How to Enable Enviro Integration

1. Go to your scene’s FireManager

2. Enable:

o Use External Weather System
o (Optional) Auto Detect Enviro

The system will try to find EnviroManager.instance at runtime.

How Fire Reacts to Enviro

When integration is active:

 Propagation will be blocked if it’s raining or wet

 FireEntity will auto-extinguish if Extinguish In Rain is enabled

This is determined by:

EnviroManager.instance.Environment.Settings.wetness > 0.25f

You can tweak this threshold in your own logic if needed.

EnviroRainToggle Script

You can also manually control rain status from any script using our included:

EnviroRainToggle.cs

This script lets you:

 Trigger a rain preset

 Trigger a clear weather preset

Useful for demo scenes, testing, or custom weather triggers.

public void SetRain(bool enable)

{

 EnviroManager.instance.Weather.ChangeWeather(enable ? rainWeatherName :

clearWeatherName);

}

Fallback Option – WeatherManager

For simple projects, you can use:

WeatherManager.isRaining = true;

This boolean will be checked by all FireEntity components, allowing you to simulate rain

without any external system.

Summary

Weather System FireManager Behavior

Enviro (auto) Uses EnviroManager wetness

Manual script Set manualRain = true

Fallback Uses WeatherManager.isRaining static value

10. Demo Scene Overview

Setting Fire comes with two complete demo scenes showcasing the full range of features —

from a basic torch ignition to a full firefighter simulation with weather and tools integration.

Demo Scene 1 – Simple & Modular

This scene is designed for quick testing and learning the basics of the fire system.

There’s no dependency on external assets like Enviro.

Key Features:

 ✅ Toggle torch or extinguisher with E

 ✅ Left mouse click to activate the extinguisher

 ✅ Start/Stop rain with R (via WeatherManager)

 Ignite:

o A wooden house

o A tall concrete building

o A forest zone

o Explosive barrels and flammable crates

 Objects react with spread, destruction, smoke, and explosion

 Real-time extinguishing using FireExtinguisherFPS

This scene is perfect for learning how the system behaves under various conditions without

any third-party dependency.

Demo Game 2 – Full Interactive Firefighting Simulation

This playable demo is a full simulation scene designed for immersion and realism.

It integrates:

 Enviro – Sky & Weather for real-time rain handling

 Game Tools for input, UI prompts, and toggles

 Gyro Manager for flashing lights and vehicle effects

 Light Beam System for realistic URP headlights & spotlights

Key Gameplay Elements:

 Firefighters actively extinguishing the building

 You can replace them and take control:

o Climb the ladder platform

o Extinguish from above or on foot

 Change fire state, interact with objects (E)

 Rain dynamically affects propagation

 Fire spreads through floors, crates, and nearby barrels

On-Screen Instructions:

 E to interact

 F to start fire manually

 R to toggle rain

 Mouse to extinguish

This scene is designed to demonstrate full integration between Setting Fire and all TEAM

VICTOR & BORIS tools.

Folder Locations

Scene Path

Simple Demo Assets/BLInformatique/SettingFire/Scenes/Demo_Simple.unity

Full Enviro Demo Download from https://www.blintormatique.fr

12. Troubleshooting & Tips

Having trouble getting fire to ignite, spread, or extinguish properly? This section lists

common problems, their causes, and solutions.

✅ Fire doesn't start

Possible Causes:

 The object does not have a FireEntity component

 Can Be Ignited is unchecked

 The igniter has no Tag or wrong Tag

 The igniter is not on the “Fire” layer

 No collider on the object

✅ Solutions:

 Make sure you used the Fire Systeme tool to prepare the object

 Check that the torch uses:

Tag = Torch and Layer = Fire

 Ensure Auto Ignite is enabled or call Ignite() manually

✅ Fire doesn't spread

Possible Causes:

 Enable Propagation is unchecked

 Spread radius is too small

 No nearby FireEntity objects

 It’s raining, and propagation is blocked

✅ Solutions:

 Check FireEntity’s Weather & Propagation tab

 Set Block Propagation When Raining = false in FireManager

 Increase Spread Radius to reach neighbors

✅ Fire disappears too fast

Possible Causes:

 Auto Fade is enabled

 Fire Lifetime is too short

 Rain is extinguishing fire

✅ Solutions:

 Disable Auto Fade or increase lifetime

 Disable Extinguish In Rain in FireEntity

 Toggle manualRain in FireManager to test without weather

✅ Fire Extinguisher doesn't work

Possible Causes:

 Incorrect LayerMask (not targeting "Fire")

 Extinguish Distance too low

 Extinguisher not active

✅ Solutions:

 Set LayerMask to include "Fire"

 Test with Enable Debug Visuals to see the raycast

 Make sure input key or InputAction is correctly bound

✅ Explosion never happens

Possible Causes:

 Can Explode is disabled

 Explosion Delay too long

 Fire never ignites

✅ Solutions:

 Enable Can Explode

 Set a short delay (e.g., 0.5s)

 Trigger ignition manually with script or igniter

Resetting the Scene

If your scene is acting up:

 Recreate the FireManager via menu
Tools > BLInformatique > Setting Fire > Create Fire Manager

 Re-run the Fire Systeme window on your object

 Reassign the Fire Prefab if broken

Bonus Tips

 Use low-poly debris and optimized smoke for big scenes

 Combine with Game Tools for toggle inputs and HUD

 Call FireEntity.Ignite() from triggers, enemies, AI, or scripts

13. Support & Credits

Setting Fire was crafted with passion, precision, and a bit of controlled chaos by:

✅TEAM VICTOR & BORIS

Two developers united by one mission:

Deliver powerful tools with style, reliability, and fun.

Need Help? Questions? Suggestions?

We’re here to help.

Contact Support:

Email: settingfire@blinformatique.fr

Website: https://www.blinformatique.fr

Whether you're a beginner or a veteran dev, we’re always happy to help improve your fire

simulation experience.

https://www.blinformatique.fr/

Other Tools from the Team

You’ll find these tools used in the Setting Fire demo scenes:

 Game Tools – Input manager, toggles, key events, and UI etc…

 Gyro Manager – Flashing lights, emergency systems

 Light Beam System – URP-ready light cones and volumetrics

 And many more to come...

Browse all our assets here:

https://assetstore.unity.com/publishers/53650

Built with Unity 6000.1.7f1

 Fully compatible with URP

 Designed for FPS / Simulation / Sandbox / Training

 Tested in real demo projects

 Organized, clean code

License

All content is © BLInformatique 2024.

You may use, modify, and integrate into commercial or personal projects. Redistribution or

resale of the core package is prohibited.

A Final Word

"We don’t just simulate fire… we make it part of the story."

— Victor & Boris

